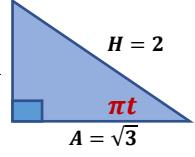


GCE A LEVEL MARKING SCHEME

SUMMER 2022

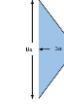
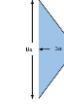
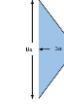
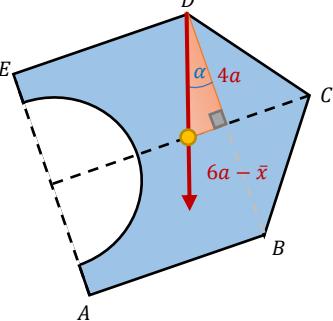
**A LEVEL (NEW)
FURTHER MATHEMATICS
UNIT 6 FURTHER MECHANICS B
1305U60-1**

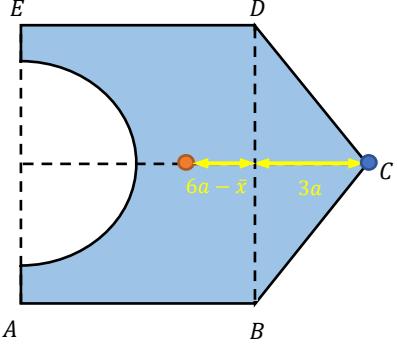
INTRODUCTION

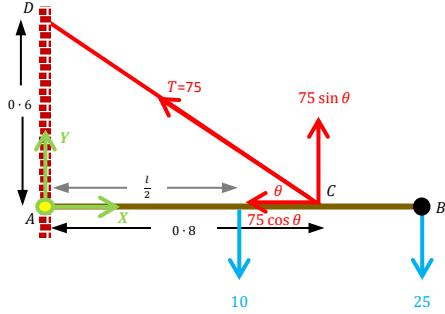
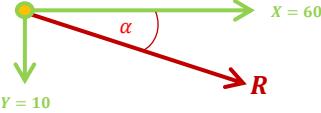

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

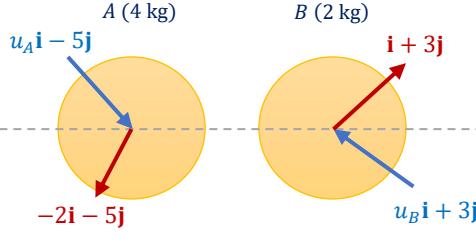
It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

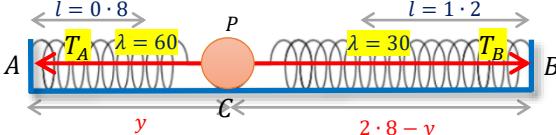
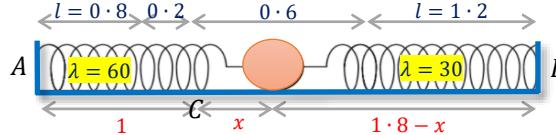
WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.





WJEC GCE A LEVEL FURTHER MATHEMATICS
UNIT 6 FURTHER MECHANICS B
SUMMER 2022 MARK SCHEME

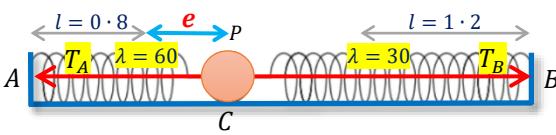

Q1	Solution	Mark	Notes
(a)	$a = v \frac{dv}{dx}$ $\frac{dv}{dx} = -\frac{96}{(4x+9)^2}$ $a = \frac{24}{4x+9} \times -24(4x+9)^{-2} \times 4$ $a = -\frac{2304}{(4x+9)^3}$	M1 B1 A1 [3]	Used cao, isw
(b)	(i) $-\frac{4}{3} = -\frac{2304}{(4x+9)^3}$ $4x+9 = \sqrt[3]{1728}$ $x = \frac{3}{4}$	M1 m1 A1	FT their a from part (a) Only FT $ax + b = \sqrt[3]{c}$ from the form $-\frac{4}{3} = \frac{k}{(4x+9)^3}$ cao
	(ii) $v = \frac{dx}{dt} = \frac{24}{4x+9}$ $\int (4x+9)dx = 24 \int dt$ $2x^2 + 9x = 24t (+C)$ When $t = 0, x = -2 \quad (\Rightarrow C = -10)$ $t = \frac{1}{24}(2x^2 + 9x + 10)$ or $t = \frac{1}{12}x^2 + \frac{3}{8}x + \frac{5}{12}$ Substitute x from (i) into expression for t above $T = \frac{1}{24} \left(2 \left(\frac{3}{4} \right)^2 + 9 \left(\frac{3}{4} \right) + 10 \right)$ $T = \frac{143}{192} = 0.74(4791 \dots)$	M1 M1 A1 m1 A1 M1 A1 [9]	Separation of variables All correct Use of initial conditions Correct expression only ($t =$) Sub. their x into their t expression involving x and t FT their x if used in the correct expression only
Total for Question 1		12	

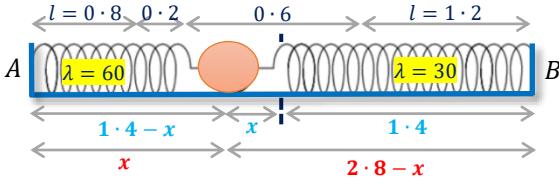


Q2	Solution	Mark	Notes
(a)	<p>(i) $x = \sin(\pi t) + \sqrt{3} \cos(\pi t)$.</p> $\frac{dx}{dt} = v = \pi \cos(\pi t) - \sqrt{3} \pi \sin(\pi t)$ $\frac{d^2x}{dt^2} = -\pi^2 \sin(\pi t) - \sqrt{3} \pi^2 \cos(\pi t)$ $\frac{d^2x}{dt^2} = -\pi^2 x$ <p>\therefore motion is SHM (with $\omega = \pi$)</p> <p>Value of x at the centre of motion = 0</p> <p>(ii) Period = $\frac{2\pi}{\omega} = \frac{2\pi}{\pi} = 2$ (s)</p> <p>Amplitude, a = value of x when $v = 0$ $\pi \cos(\pi t) - \sqrt{3} \pi \sin(\pi t) = 0$</p> $\tan(\pi t) = \frac{1}{\sqrt{3}} \quad \left(= \frac{\sqrt{3}}{3}\right)$ $\sin(\pi t) = \frac{1}{2} \quad \text{or} \quad \cos(\pi t) = \frac{\sqrt{3}}{2} \quad \text{OR} \quad x _{t=\frac{1}{6}}$ $a = \left(\frac{1}{2}\right) + \sqrt{3} \left(\frac{\sqrt{3}}{2}\right)$ $a = 2 \text{ (m)}$	B1 M1 A1 B1 B1 M1 m1 A1 [8]	$\dot{x}, v = \dots$ $\ddot{x}, \dot{v}, a = \dots$ Convincing Convincing FT their v Either trig. ratio OR sub. $t = \frac{1}{6}$ into x cao
(b)	<p>Q has same period as $P \Rightarrow \omega = \pi$ amplitude is a</p> $v^2 = \omega^2(a^2 - x^2), \omega = \pi, x = \pm 2\sqrt{3}, v = \pm 2\pi$ $(2\pi)^2 = \pi^2 \left(a^2 - (2\sqrt{3})^2\right),$ $a = 4 \text{ (m)}$	M1 A1 A1 [3]	Condone repeated use of a FT their $\omega = k\pi$ Correct equation cao
(c)	<p>$x = \pm 4 \sin(\pi t)$</p> $\sin(\pi t) + \sqrt{3} \cos(\pi t) = \pm 4 \sin(\pi t)$ $\tan(\pi t) = \frac{\sqrt{3}}{3} \quad \text{or} \quad \tan(\pi t) = -\frac{\sqrt{3}}{5}$ $t = \frac{1}{6} = 0 \cdot 16(66 \dots) \quad \text{or} \quad t = 0 \cdot 89(385 \dots)$	M1 m1 A1 A1 [4]	Allow $\pm a \cos(\pi t)$, a from part (b) RHS = $\pm a \cos(\pi t)$ cao


Total for Question 2



15

Q3	Solution	Mark	Notes															
(a)	$(\bar{y} =) 4a$	B1 [1]																
(b)	<table border="1"> <thead> <tr> <th>Shape</th> <th>Area/mass</th> <th>Distance from AE</th> </tr> </thead> <tbody> <tr> <td></td> <td>$8a \times 6a (= 48a^2)$</td> <td>$3a$</td> </tr> <tr> <td></td> <td>$\frac{8a \times 3a}{2} (12a^2)$</td> <td>$6a + \frac{1}{3}(3a) (= 7a)$</td> </tr> <tr> <td></td> <td>$\frac{\pi(3a)^2}{2} (= \frac{9\pi a^2}{2})$</td> <td>$\frac{4(3a)}{3\pi} (= \frac{4a}{\pi})$</td> </tr> <tr> <td>Lamina</td> <td>$a^2 \left(60 - \frac{9\pi}{2} \right)$</td> <td>$\bar{x}$</td> </tr> </tbody> </table> <p>Moments about AE</p> $a^2 \left(60 - \frac{9\pi}{2} \right) \bar{x} = (48a^2)(3a) + (12a^2)(7a)$ $- \left(\frac{9\pi a^2}{2} \right) \left(\frac{4a}{\pi} \right)$ $\left(\frac{120 - 9\pi}{2} \right) \bar{x} = 144a + 84a - 18a$ $\bar{x} = \frac{140}{40 - 3\pi} a$	Shape	Area/mass	Distance from AE		$8a \times 6a (= 48a^2)$	$3a$		$\frac{8a \times 3a}{2} (12a^2)$	$6a + \frac{1}{3}(3a) (= 7a)$		$\frac{\pi(3a)^2}{2} (= \frac{9\pi a^2}{2})$	$\frac{4(3a)}{3\pi} (= \frac{4a}{\pi})$	Lamina	$a^2 \left(60 - \frac{9\pi}{2} \right)$	\bar{x}	B3 B1 M1 A1 A1 [7]	<p>Candidates may legitimately include a ρ term for mass per unit area</p> <p>B3 6 B2 any 4 or 5, B1 any 2 or 3 correct</p> <p>Allow $-\frac{\pi(3a)^2}{2}$ or $-\frac{4(3a)}{3\pi}$</p> <p>Masses and moments consistent All terms, allow one sign error</p> <p>FT Correct for their table, provided semicircle is subtracted in lamina area and moment</p> $\bar{x} = \frac{420}{120 - 9\pi} a$ <p>Convincing</p>
Shape	Area/mass	Distance from AE																
	$8a \times 6a (= 48a^2)$	$3a$																
	$\frac{8a \times 3a}{2} (12a^2)$	$6a + \frac{1}{3}(3a) (= 7a)$																
	$\frac{\pi(3a)^2}{2} (= \frac{9\pi a^2}{2})$	$\frac{4(3a)}{3\pi} (= \frac{4a}{\pi})$																
Lamina	$a^2 \left(60 - \frac{9\pi}{2} \right)$	\bar{x}																
(c)	<p>(i)</p> <p>If hanging in equilibrium, vertical passes through centre of mass.</p> $\alpha = \tan^{-1} \left(\frac{6a - \bar{x}}{4a} \right) \quad \text{OR} \quad \alpha = \tan^{-1} \left(\frac{4a}{6a - \bar{x}} \right)$ $\alpha = 90 - 70 \cdot 44(07 \dots)^\circ$ $\alpha = 19 \cdot 55(92 \dots)^\circ$	M1 A1 A1	<p>Correct triangle identified Condone missing α's</p> <p>Note that</p> $6a - \bar{x} = \left(\frac{100 - 18\pi}{40 - 3\pi} \right) a$ $= (1 \cdot 4211 \dots) a$ <p>cso, accept answers rounding to $\theta = 19^\circ$ or 20°</p>															


<p>(ii)</p>		<p>M1 Condone missing a's</p> <p>A1 $M \times (6 - \bar{x})a = kM \times 3a$</p> <p>A1 cso, accept answers rounding to $k = 0.47$</p> <p>[6]</p> <p><u>Alternative Solution</u></p> <table border="1" data-bbox="293 1100 809 1381"> <thead> <tr> <th>Shape</th><th>Area/mass</th><th>Distance from AE</th><th>Distance from BD</th></tr> </thead> <tbody> <tr> <td>Lamina</td><td>M</td><td>\bar{x}</td><td>$6a - \bar{x}$</td></tr> <tr> <td>Particle</td><td>kM</td><td>$9a$</td><td>$3a$</td></tr> <tr> <td>New Lamina</td><td>$(k+1)M$</td><td>$6a$</td><td>0</td></tr> </tbody> </table> <p>M1 Condone missing a's</p> <p>A1</p> <p>A1 cso, accept answers rounding to $k = 0.47$</p>	Shape	Area/mass	Distance from AE	Distance from BD	Lamina	M	\bar{x}	$6a - \bar{x}$	Particle	kM	$9a$	$3a$	New Lamina	$(k+1)M$	$6a$	0
Shape	Area/mass	Distance from AE	Distance from BD															
Lamina	M	\bar{x}	$6a - \bar{x}$															
Particle	kM	$9a$	$3a$															
New Lamina	$(k+1)M$	$6a$	0															
<p>Total for Question 3</p>		<p>14</p>																


Q4	Solution	Mark	Notes
(a)	<p>Moments about A</p> $75 \sin \theta \times 0.8 = 10 \times \frac{l}{2} + 25 \times l$ $l = 1.2 \text{ (m)}$	M1 A1 A1 A1 [4]	length of rod $AB = l$ $\sin \theta = 0.6$ $\cos \theta = 0.8$ Dim. correct equation with 3 terms -1 each error cao
(b)	<p>Resolve vertically $Y + 75 \sin \theta = 10 + 25$ $Y = -10 \text{ (N)}$</p> <p>Resolve horizontally $X = 75 \cos \theta$ $X = 60 \text{ (N)}$</p> $R = \sqrt{60^2 + 10^2}$ $R = 10\sqrt{37} = 60 \cdot 82(76 \dots) \text{ (N)}$ $\tan \alpha = \frac{10}{60}$ $\alpha = 9.46(23 \dots)^\circ \text{ below the horizontal}$	M1 A1 M1 A1 m1 A1 m1 A1 [8]	Dim. correct equation, no extra/missing forces Dim. correct equation, no extra forces Provided both M's awarded, FT their X and Y cao Provided both M's awarded, FT their X and Y cao
Total for Question 4			12

Q5	Solution	Mark	Notes
(a)	<p>Con. of momentum (along line of centres)</p> $4u_A + 2u_B = 4(-2) + 2(1)$ $(2u_A + u_B = -3) \quad 4u_A \mathbf{i} + 2u_B \mathbf{i} = -6\mathbf{i}$ <p>Restitution (along line of centres)</p> $(1) - (-2) = -\frac{2}{5}(u_B - u_A)$ $(2u_A - 2u_B = 15) \quad 4u_A \mathbf{i} + 2u_B \mathbf{i} = -6\mathbf{i}$ <p>Solving equations</p> $u_A = \frac{3}{2} \quad u_B = -6$ <p>Velocities before collision</p> <p>Sphere A = $\frac{3}{2}\mathbf{i} - 5\mathbf{j}$ (ms⁻¹)</p> <p>Sphere B = $-6\mathbf{i} + 3\mathbf{j}$ (ms⁻¹)</p>	M1 A1 M1 A1 m1	<p>Before collision After collision $e = \frac{2}{5}$</p> <p>Attempted. Allow 1 sign error. $4(u_A \mathbf{i} - 5\mathbf{j}) + 2(u_B \mathbf{i} + 3\mathbf{j}) = 4(-2\mathbf{i} - 5\mathbf{j}) + 2(\mathbf{i} + 3\mathbf{j})$</p> <p>All correct, oe</p> <p>Condone i's, i.e.</p> <p>Attempted. Allow 1 sign error.</p> <p>All correct, condone i's, $\frac{2}{5} = -\frac{1-2}{u_B-u_A} = \frac{1-2}{u_A-u_B}$</p> <p>One variable eliminated</p>
(b)	Wall is parallel to vector \mathbf{i} since impulse only has a \mathbf{j} component	B1 [1]	Parallel to vector \mathbf{i} since ... <ul style="list-style-type: none"> • No \mathbf{i} component • No momentum in \mathbf{i} direction • Perpendicular to wall
(c)	<p>Impulse, $\mathbf{I} = \text{change in momentum}$ $32\mathbf{j} = 4\mathbf{v} - 4(-2\mathbf{i} - 5\mathbf{j})$</p> <p>$\mathbf{v} = -2\mathbf{i} + 3\mathbf{j}$</p> <p>speed = $\sqrt{2^2 + 3^2}$ $= \sqrt{13}$ (ms⁻¹) or = $3 \cdot 60$ (55 ...)</p>	M1 A1 B1 [3]	Used, $32\mathbf{j} = -4\mathbf{v} + 4(-2\mathbf{i} - 5\mathbf{j})$ $32 = 4v - 4(-5)$ Condone j's on the above
(d)	<p>Loss in KE = $\frac{1}{2}(4)(2^2 + 5^2) - \frac{1}{2}(4)(\sqrt{13}^2)$</p> <p>OR</p> <p>Loss in KE = $\frac{1}{2}(4)(5^2) - \frac{1}{2}(4)(3^2)$</p> <p>Loss in KE = 32 (J)</p>	M1 A1 [2]	Difference in KE, any order At least one v^2 correct
Total for Question 5			13

Q6	Solution	Mark	Notes
(a)	<p>Let $AC = y$</p> $T_A = \frac{60(y-0.8)}{0.8} \quad (= 75y - 60)$ $T_B = \frac{30(2.8-1.2-y)}{1.2} \quad (= 40 - 25y)$ <p>In equilibrium, $T_A = T_B$</p> $\frac{60(y-0.8)}{0.8} = \frac{30(2.8-1.2-y)}{1.2}$ $75y - 60 = 40 - 25y$ $y = 1 \text{ (m)}$	M1 A1 m1 A1 A1 	$AB = 2 \cdot 8 \text{ m}$ Use of Hooke's Law $\frac{60 \text{ dist}}{0.8}$ or $\frac{30 \text{ dist}}{1.2}$ Any algebraic extension/distance T_B or T_A correct Convincing [4]
(b)	<p>(i) Let x denote the displacement of P from C</p> $T_A = \frac{60(0.2+x)}{0.8} \quad (= 15 + 75x)$ $T_B = \frac{30(0.6-x)}{1.2} \quad (= 15 - 25x)$ <p>Apply N2L to P,</p> $T_B - T_A = 4 \frac{d^2x}{dt^2}$ $\frac{30(0.6-x)}{1.2} - \frac{60(0.2+x)}{0.8} = 4 \frac{d^2x}{dt^2}$ $-100x = 4 \frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} = -25x$ <p>\therefore SHM with $\omega = 5$ (with centre at C)</p> $\text{Period} = \frac{2\pi}{\omega} = \frac{2\pi}{5}$	B1 M1 A1 B1 B1 B1	$AB = 2 \cdot 8 \text{ m}$ either term, oe Dim. correct. T_B, T_A opposing Allow for any defined x , e.g. $\frac{d^2x}{dt^2} = -25(x - 1)$ Must come from $\ddot{x} = \omega^2 x$ FT ω

	<p>(ii) Amplitude, $a = 1 \cdot 4 - 1 = 0 \cdot 4$ (m)</p> <p>Using $x = \pm a \cos \omega t$ with $a = 0 \cdot 4$, $\omega = 5$</p> $-0 \cdot 2 = 0 \cdot 4 \cos 5t$ $t = \frac{2\pi}{15} = 0 \cdot 418(879 \dots) \text{ (s)}$	<p>B1</p> <p>M1</p> <p>A1</p> <p>A1</p> <p>[10]</p>	<p>Allow $x = \pm a \sin(\omega t)$</p> <p>FT a and ω</p> <p>FT for $-0 \cdot 2 = a \cos \omega t$</p> <p>cao</p>
Total for Question 6			14

Q6	Alternative Solution	Mark	Notes
(a)	<p>Let e = extension in AP</p> $T_A = \frac{60}{0.8} e \quad (= 75e)$ $T_B = \frac{30(0.8-e)}{1.2} \quad (= 20 - 25e)$ <p>In equilibrium, $T_A = T_B$</p> $\frac{60}{0.8} e = \frac{30(0.8-e)}{1.2}$ $75e = 20 - 25e \quad \Rightarrow \quad e = 0.2$ $AC = 0.8 + 0.2 = 1 \text{ (m)}$	<p>M1</p> <p>A1</p> <p>m1</p> <p>A1</p> <p>[4]</p>	<p>$AB = 2 \cdot 8 \text{ m}$</p> <p>Use of Hooke's Law $\frac{60 \text{ dist}}{0.8}$ or $\frac{30 \text{ dist}}{1.2}$ Any algebraic distance/extension</p> <p>T_B or T_A correct</p> <p>Convincing</p>

Q6	Alternative Solution	Mark	Notes
(b)	<p>(i) Let x denote the displacement of P from</p> <ul style="list-style-type: none"> the midpoint of AB A $T_A = \frac{60(1.4 - 0.8 - x)}{0.8} \quad T_A = \frac{60(x - 0.8)}{0.8}$ $T_B = \frac{30(1.4 - 1.2 + x)}{1.2} \quad T_B = \frac{30(2.8 - 1.2 - x)}{1.2}$ <p>Apply N2L to P,</p> $4 \frac{d^2x}{dt^2} = \left\{ \begin{array}{l} T_A - T_B \\ T_B - T_A \end{array} \right.$ $4 \frac{d^2x}{dt^2} = \left\{ \begin{array}{l} \frac{60(1.4 - 0.8 - x)}{0.8} - \frac{30(1.4 - 1.2 + x)}{1.2} \\ \frac{30(2.8 - 1.2 - x)}{1.2} - \frac{60(x - 0.8)}{0.8} \end{array} \right.$ $4 \frac{d^2x}{dt^2} = \left\{ \begin{array}{l} 40 - 100x \\ 100 - 100x \end{array} \right.$ $\frac{d^2x}{dt^2} = \left\{ \begin{array}{l} -25(x - 0.4) \\ -25(x - 1) \end{array} \right.$ <p>\therefore SHM with $\omega = 5$ (with centre at $x = 0.4$, i.e. C) (with centre at $x = 1$, i.e. C)</p> $\text{Period} = \frac{2\pi}{\omega} = \frac{2\pi}{5}$	B1 B1 M1 A1 A1 B1 B1 B1	$AB = 2.8 \text{ m}$ $T_A = 45 - 75x \text{ or } 75x - 60$ either term, oe $T_B = 5 + 25x \text{ or } 40 - 25x$ Dim. correct. T_B, T_A opposing FT ω
	<p>(ii) Amplitude, $a = 1.4 - 1 = 0.4 \text{ (m)}$</p> <p>Using $x - 0.4 = \pm a \cos \omega t$ with $a = 0.4$, $\omega = 5$</p> $0.6 - 0.4 = -0.4 \cos 5t$ $t = \frac{2\pi}{15} = 0.418(879 \dots) \text{ (s)}$ <p>OR</p> <p>Using $x - 1 = \pm a \cos \omega t$ with $a = 0.4$, $\omega = 5$</p> $0.8 = 1 + 0.4 \cos 5t$ $-0.2 = 0.4 \cos 5t$ $t = \frac{2\pi}{15} = 0.418(879 \dots) \text{ (s)}$	B1 M1 A1 A1 (M1) (A1) (A1) [10]	Allow $x = \pm a \sin(\omega t)$ FT a and ω FT RHS with $x = 1.4 - 0.4$ cao
	Total for Question 6	14	